
Anbaufreiläufe FXR ...

RINGSPANN[®]

für stirnseitige Schraubverbindung mit Klemmstückabhebung X und Drehmomentbegrenzung

Anwendung als

Rücklaufsperre

für Stetigförderer mit Mehrfachantrieb, bei denen die Antriebe jeweils mit einer Rücklaufsperre ausgestattet sind.

Eigenschaften

Anbaufreiläufe FXR ... sind Klemmstück-Freiläufe ohne eigene Lagerung in Bauart mit Klemmstückabhebung X. Sie bestehen aus den Anbaufreiläufen FXM (siehe Seite 60 bis 65) mit zusätzlichem Drehmomentbegrenzer.

Die Klemmstückabhebung X sorgt für verschleißfreien Leerlaufbetrieb bei schnell drehendem Innenring.

Bei Stetigförderern mit Mehrfachantrieb ist das Problem der ungleichen Verteilung des Rückdrehmomentes auf die einzelnen Getriebe und Rücklaufsperren zu beachten. Bei Stillstand der Anlage wirkt das gesamte Rückdrehmoment aufgrund unterschiedlicher Spiele und Elastizitäten in den beteiligten Antrieben überwiegend auf nur eine Rücklaufsperre. Beim Einsatz von Rücklaufsperren ohne Drehmomentbegrenzung müssten die einzelnen Getriebe und die dazugehörigen Rücklaufsperren aus Sicherheitsgründen jeweils auf das gesamte Rückdrehmoment der Förderanlage ausgelegt werden.

Das Problem der ungleichen Verteilung des Rückdrehmoments wird durch die Rücklaufsperren FXR ... mit Drehmomentbegrenzung gelöst. Der in der Rücklaufsperre eingebaute Drehmomentbegrenzer rutscht bei Überschreiten des eingestellten Drehmomentes kurzzeitig, bis sukzessiv die weiteren Rücklaufsperren in Eingriff kommen. Damit wird erreicht, dass sich das gesamte Rückdrehmoment der Förderanlage auf die einzelnen Rücklaufsperren und Getriebe verteilt. Zudem werden die dynamischen Drehmomentspitzen des Sperrrvorgangs abgebaut, so dass die Getriebe vor schädlichen Drehmomentspitzen geschützt sind. Durch den Einsatz von Rücklaufsperren FXR ... mit Drehmomentbegrenzung können bei Mehrfachantrieben die Getriebe kleiner dimensioniert werden.

Vorteile

- Schutz der Getriebe vor Überlastung durch ungleichmäßige Lastverteilung bei Mehrfach-
- Schutz der Getriebe vor dynamischen Drehmomentspitzen beim Sperrvorgang
- Kleiner dimensionierte Getriebe ohne Einbuße an Sicherheit verwendbar
- Schutz der Rücklaufsperren, da dynamische Drehmomentspitzen durch kurzzeitiges Rutschen abgeschnitten werden

Anbaufreil

für stirnseitige Schraubverbindung mit Klemmstückabhebung X und Drehmomentbegrenzung

Anbaufreilauf FXRW und FXRV mit Drehmomentbegrenzung ohne steuerbare Löseeinrichtung

Diese Baureihe der Rücklaufsperren mit Drehmomentbegrenzung ist die Grundausführung. Der konstruktive Aufbau und die lieferbaren Standardgrößen sind auf Seite 70 und 72 dargestellt.

Anbaufreilauf FXRU und FXRT mit Drehmomentbegrenzung und steuerbarer Löseeinrichtung

Diese Baureihe ist aufgebaut wie die Baureihe FXRW bzw. FXRV; zusätzlich ist eine feinfühlig steuerbare Löseeinrichtung eingebaut. Der konstruktive Aufbau, Funktionsbeschreibung der Löseeinrichtung und die lieferbaren Standardgrößen sind auf Seite 71 und 73 dargestellt.

Die Rücklaufsperren mit steuerbarer Löseeinrichtung werden eingesetzt, wenn ein kontrolliertes Entspannen des Bandzugs bzw. der Anlage - etwa im Falle von Verklemmungen an der Umlenktrommel - oder eine begrenzte Rückwärtsbewegung der Förderanlage gewünscht wird.

Bestimmung des Auslegungsdrehmomentes

Die nachfolgende Bestimmung des Auslegungsdrehmomentes gilt für Mehrfachantriebe, bei denen je Antrieb die gleiche Motorleistung vorgesehen ist. Bei unterschiedlichen Motorleistungen bitten wir um Rückfrage.

Ist das Rückdrehmoment pro Antrieb $\rm M_L$ bekannt, dann sollte das Auslegungsdrehmoment $\rm M_A$ der jeweiligen Rücklaufsperre wie folgt bestimmt werden:

$$M_A = 1.2 \cdot M_I \text{ [Nm]}$$

Wenn dagegen nur die Motornennleistung pro Antrieb P_n [kW] bekannt ist, dann gilt:

$$M_A = 1.2 \cdot 9550 \cdot F^2 \cdot P_0/n_{SP} [Nm]$$

In den Gleichungen sind:

M_A = Auslegungsdrehmoment der jeweiligen Rücklaufsperre [Nm]

$$M_I = 9550 \cdot F \cdot P_I / n_{SP} [Nm]$$

 Statisches Rückdrehmoment der Last pro Antrieb, bezogen auf die jeweilige Rücklaufsperrenwelle [Nm] P_L = Hubleistung pro Antrieb bei Volllast [kW]

 Förderhöhe [m] multipliziert mit der pro Sekunde geförderten Last geteilt durch die Anzahl der Antriebe [kN/s]

 $P_0 = Motor-Nennleistung [kW]$

n_{SP} = Drehzahl Rücklaufsperrenwelle [min⁻¹]

F = Auslegungsfaktor

Nach Berechnung von M_A ist die Größe der jeweiligen Rücklaufsperre nach den Katalogangaben so auszuwählen, dass stets gilt:

 $M_R \ge M_A$

M_R = Maximales Rutschdrehmoment der jeweiligen Rücklaufsperre gemäß den Tabellenwerten auf den Seiten 70 bis 73 [Nm]

Richtwerte für F:

Art der Anlage	F	F ²
Förderbänder, Neigung bis 6°	0,71	0,50
Förderbänder, Neigung bis 8°	0,78	0,61
Förderbänder, Neigung bis 10°	0,83	0,69
Förderbänder, Neigung bis 12°	0,86	0,74
Förderbänder, Neigung bis 15°	0,89	0,79
Schneckentrogpumpen	0,93	0,87
Kegelmühlen, Trockentrommeln	0,85	0,72
Becherwerke, Elevatoren	0,92	0,85
Hammermühlen	0,93	0,87

Die Summe der Rutschdrehmomente der einzelnen Rücklaufsperren muss in jedem Fall um den Faktor 1,2 höher sein als das statische Rückdrehmoment der Anlage (auch bei Überlast). Die in den Tabellen angegebenen Drehmomente sind Maximalwerte. Niedrigere Werte sind auf Wunsch einstellbar. Bitte fragen Sie in Zweifelsfällen mit genauer Beschreibung der Anlage und der Betriebsbedingungen bei uns an. Am besten verwenden Sie dafür den Auswahlbogen auf Seite 112.

Beispiel

Zweifach-Antrieb

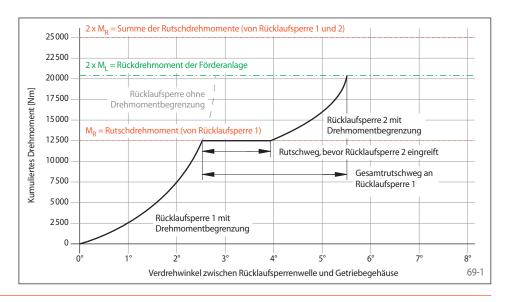
Motorleistung je Antrieb: $P_0 = 630 \text{ kW}$

Art der Anlage:

Förderband mit 8° Neigung => F^2 = 0,61

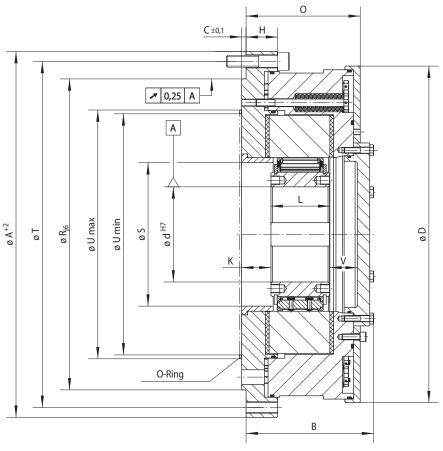
Drehzahl je Rücklaufsperrenwelle:

$$n_{SP} = 360 \, \text{min}^{-1}$$


Auslegungsdrehmoment der jeweiligen Rücklaufsperre:

 $M_A = 1,2 \cdot 9550 \cdot 0,61 \cdot 630 / 360 [Nm]$ = 12 234 Nm

Es soll stets gelten:


$$M_R \ge M_{\Delta}$$

=> FXRU bzw.FXRW 140 - 63 MX sind die wirtschaftlich geeigneten Rücklaufsperrengrößen.

für stirnseitige Schraubverbindung mit Klemmstückabhebung X und Drehmomentbegrenzung

	Bauart Klemmstückabhebung X Für erhöhte Lebensdauer durch Klemmstück- abhebung bei schnell drehendem Innenring	
5		

		Rutsch-	Klemmstück-	Max.Drehzahl	Bohi	ung	Α	В	С	D	G**	Н	K	L	0	R	S	T	U*	**	V	Z**	Gewicht
		dreh-	abhebung	Innenring	d																		
Freilauf-		moment	bei Drehzahl	läuft frei																			
größe	Тур	M_R	Innenring		Standard	max.													min.	max.			
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
FXRV 85 - 40	MX	1 400	430	6000	60	65	330	143	6	295	M 12	37	29	60	127	280	110	308	165	215	43	6	57
FXRV 100 - 50	MX	2 300	400	4500	70	80*	350	150	6	311	M 12	39	31	70	134	300	125	328	180	240	38	6	65
FXRV 120 - 50	MX	3 400	320	4000	80	95	400	150	6	360	M 16	36	31	70	134	340	145	373	200	260	38	6	86
FXRV 140 - 50	MX	4 500	320	3 0 0 0	90	110	430	160	6	386	M 16	36	31	70	134	375	165	403	220	280	50	6	102
FXRV 170 - 63	MX	9 000	250	2700	100	130	500	175	6	460	M 16	43	40	80	156	425	196	473	250	340	38	6	163
FXRV 200 - 63	MX	12 500	240	2100	110	155	555	175	6	516	M 16	49	40	80	156	495	226	528	275	390	38	6	205
FXRV 240 - 63	LX	21 200	220	3 0 0 0		185	710	195	8	630	M 20	50	50	90	170	630	290	670	355	455	45	12	347
FXRV 260 - 63	LX	30 000	210	2500		205	750	205	8	670	M 20	50	50	105	183	670	310	710	375	500	40	12	411
FXRV 290 - 70	LX	42 500	200	2500		230	850	218	8	755	M 24	52	50	105	190	730	335	800	405	560	48	12	562
FXRV 310 - 96	LX	53 000	195	2100		240	900	260	10	800	M 24	63	63	120	240	775	355	850	435	600	69	12	792
FXRV 360 - 100	LX	75 000	180	1800		280	975	267	10	870	M 30	63	63	125	243	850	400	925	485	670	71	12	942
FXRV 410 - 100	LX	100 000	170	1500		300	1060	267	10	950	M 30	63	63	125	243	950	450	1000	535	750	71	12	1053

Paßfedernut nach DIN 6885, Blatt 1 • Toleranz der Nutbreite JS10. * Paßfedernut nach DIN 6885, Blatt 3 • Toleranz der Nutbreite JS10. ** Z = Anzahl der Befestigungslöcher für Schrauben G (DIN EN ISO 4762) auf Teilkreis T. *** Bereich für O-Ring Abdichtung.

Drehmomente

Die Anbaufreiläufe FXRV werden mit eingestelltem Rutschdrehmoment M_R des Drehmomentbegrenzers geliefert. Das statische Rückdrehmoment M_L der Anlage (auch bei Überlast) darf in keinem Fall die Summe der Rutschdrehmomente M_R der vorgesehenen Anbaufreiläufe erreichen. Die in der Tabelle angegebenen Rutschdrehmomente M_R sind Maximalwerte; niedrigere Werte sind einstellbar.

Einbauhinweise

Die Anbaufreiläufe FXRV haben keine eigenen Lagerung; deshalb muss sichergestellt sein, dass die Rundlaufabweichung zwischen Zentrierdurchmesser R und Wellendurchmesser d den Wert 0,25 mm nicht überschreitet.

Maß C gilt für den Anbaufreilauf. Die Zentriertiefe im kundenseitigen Anschlussteil muss mindestens C +0,2 mm sein. Als Toleranz für den Zentrierdurchmesser R des Anschlussteils ist ISO H7 vorzusehen.

Als Toleranz der Welle ist ISO h6 oder j6 vorzusehen.

72-1

Bestellbeispiel

Freilaufgröße FXRV 170-63 MX in Bauart Klemmstückabhebung X mit Bohrung 100 mm und Rutschdrehmoment 9000 Nm:

 FXRV 170-63 MX, d = 100 mm, M_R = 9000 Nm

Zur Bestimmung des Auslegungsdrehmomentes siehe Seite 69. Weitere Freilaufgrößen auf Anfrage.